Extensions 1→N→G→Q→1 with N=C32 and Q=C3×C18

Direct product G=N×Q with N=C32 and Q=C3×C18
dρLabelID
C33×C18486C3^3xC18486,250

Semidirect products G=N:Q with N=C32 and Q=C3×C18
extensionφ:Q→Aut NdρLabelID
C321(C3×C18) = C9×C32⋊C6φ: C3×C18/C9C6 ⊆ Aut C32546C3^2:1(C3xC18)486,98
C322(C3×C18) = C3×C32⋊C18φ: C3×C18/C32C6 ⊆ Aut C3254C3^2:2(C3xC18)486,93
C323(C3×C18) = C18×He3φ: C3×C18/C18C3 ⊆ Aut C32162C3^2:3(C3xC18)486,194
C324(C3×C18) = C6×C32⋊C9φ: C3×C18/C3×C6C3 ⊆ Aut C32162C3^2:4(C3xC18)486,191
C325(C3×C18) = S3×C32×C9φ: C3×C18/C3×C9C2 ⊆ Aut C32162C3^2:5(C3xC18)486,221
C326(C3×C18) = C3⋊S3×C3×C9φ: C3×C18/C3×C9C2 ⊆ Aut C3254C3^2:6(C3xC18)486,228

Non-split extensions G=N.Q with N=C32 and Q=C3×C18
extensionφ:Q→Aut NdρLabelID
C32.1(C3×C18) = C2×He3⋊C9φ: C3×C18/C18C3 ⊆ Aut C32162C3^2.1(C3xC18)486,77
C32.2(C3×C18) = C2×3- 1+2⋊C9φ: C3×C18/C18C3 ⊆ Aut C32162C3^2.2(C3xC18)486,78
C32.3(C3×C18) = C2×C9.5He3φ: C3×C18/C18C3 ⊆ Aut C321623C3^2.3(C3xC18)486,79
C32.4(C3×C18) = C2×C9.6He3φ: C3×C18/C18C3 ⊆ Aut C321623C3^2.4(C3xC18)486,80
C32.5(C3×C18) = C18×3- 1+2φ: C3×C18/C18C3 ⊆ Aut C32162C3^2.5(C3xC18)486,195
C32.6(C3×C18) = C2×C27○He3φ: C3×C18/C18C3 ⊆ Aut C321623C3^2.6(C3xC18)486,209
C32.7(C3×C18) = C2×C33⋊C9φ: C3×C18/C3×C6C3 ⊆ Aut C3254C3^2.7(C3xC18)486,73
C32.8(C3×C18) = C2×C32.19He3φ: C3×C18/C3×C6C3 ⊆ Aut C32162C3^2.8(C3xC18)486,74
C32.9(C3×C18) = C2×C32.20He3φ: C3×C18/C3×C6C3 ⊆ Aut C32162C3^2.9(C3xC18)486,75
C32.10(C3×C18) = C2×C9.4He3φ: C3×C18/C3×C6C3 ⊆ Aut C32543C3^2.10(C3xC18)486,76
C32.11(C3×C18) = C2×C923C3φ: C3×C18/C3×C6C3 ⊆ Aut C32162C3^2.11(C3xC18)486,193
C32.12(C3×C18) = C6×C27⋊C3φ: C3×C18/C3×C6C3 ⊆ Aut C32162C3^2.12(C3xC18)486,208
C32.13(C3×C18) = S3×C92φ: C3×C18/C3×C9C2 ⊆ Aut C32162C3^2.13(C3xC18)486,92
C32.14(C3×C18) = S3×C32⋊C9φ: C3×C18/C3×C9C2 ⊆ Aut C3254C3^2.14(C3xC18)486,95
C32.15(C3×C18) = S3×C9⋊C9φ: C3×C18/C3×C9C2 ⊆ Aut C32162C3^2.15(C3xC18)486,97
C32.16(C3×C18) = S3×C3×C27φ: C3×C18/C3×C9C2 ⊆ Aut C32162C3^2.16(C3xC18)486,112
C32.17(C3×C18) = S3×C27⋊C3φ: C3×C18/C3×C9C2 ⊆ Aut C32546C3^2.17(C3xC18)486,114
C32.18(C3×C18) = C2×C3.C92central extension (φ=1)486C3^2.18(C3xC18)486,62
C32.19(C3×C18) = C2×C272C9central extension (φ=1)486C3^2.19(C3xC18)486,71
C32.20(C3×C18) = C2×C32⋊C27central extension (φ=1)162C3^2.20(C3xC18)486,72
C32.21(C3×C18) = C2×C9⋊C27central extension (φ=1)486C3^2.21(C3xC18)486,81
C32.22(C3×C18) = C6×C9⋊C9central extension (φ=1)486C3^2.22(C3xC18)486,192

׿
×
𝔽